- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0001000002000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Fei, Xiqi (3)
-
Gkountouna, Olga (2)
-
Züfle, Andreas (2)
-
Almeida, Jussara (1)
-
Anderson, Taylor (1)
-
Andrienko, Gennady (1)
-
Andrienko, Natalia (1)
-
Aref, Walid (1)
-
Cao, Yang (1)
-
Chawla, Sanjay (1)
-
Cheng, Reynold (1)
-
Chrysanthis, Panos (1)
-
Ghinita, Gabriel (1)
-
Graser, Anita (1)
-
Gunopulos, Dimitrios (1)
-
Jensen, Christian S (1)
-
Kim, Joon-Seok (1)
-
Kim, Kyoung-Sook (1)
-
Krumm, John (1)
-
Kröger, Peer (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Mobility data captures the locations of moving objects such as humans, animals, and cars. With the availability of Global Positioning System (GPS)–equipped mobile devices and other inexpensive location-tracking technologies, mobility data is collected ubiquitously. In recent years, the use of mobility data has demonstrated a significant impact in various domains, including traffic management, urban planning, and health sciences. In this article, we present the domain of mobility data science. Towards a unified approach to mobility data science, we present a pipeline having the following components: mobility data collection, cleaning, analysis, management, and privacy. For each of these components, we explain how mobility data science differs from general data science, we survey the current state-of-the-art, and describe open challenges for the research community in the coming years.more » « less
-
Fei, Xiqi; Gkountouna, Olga; Pfoser, Dieter; Züfle, Andreas (, Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems)Fixed-route bus systems are an important part of the urban transportation mix. A considerable disadvantage of buses is their slow speed, which is in part due to frequent stops, but also due to the lack of segregation from other vehicles in traffic. As such, assessing bus routes is an important aspect of route planning, scheduling, and the creation of dedicated bus lanes. In this work, we use bus tracking data from the Washington Metropolitan Area Transit Authority to discover speed patterns in relation to bus stops throughout the day. This gives us an insight on whether the routes are affected by traffic congestion or more random events such as traffic lights. We first employ a macro-level qualitative analysis to identify patterns across different trips. A micro-level quantitative analysis further refines this approach by analyzing the speed patterns around bus stops. Our analysis is based on bus odometer data, which is a one-dimensional representation of trips that has considerable accuracy when looking at speed patterns. Exploiting route metadata in relation to stops, we use Dynamic Time Warping to cluster different stops based on their speed profiles throughout the day. The clustering can be used to generate a spatiotemporal route profile and we show how such a profile provides actionable intelligence for route planning purposes.more » « less
-
Fei, Xiqi; Gkountouna, Olga (, SIGSPATIAL Special)
An official website of the United States government
